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Abstract

In 2015 Choi, Kim, and Lovejoy studied a weighted partition func-
tion, A1(m), which counted subpartitions with a structure related to the
Rogers–Ramanujan identities. They conjectured the existence of an in-
finite class of congruences for A1(m), modulo powers of 5. We give an
explicit form of this conjecture, and prove it for all powers of 5.

1 Introduction

The unrestricted integer partition function p(m) has been studied since the time
of Euler [5], but its number theoretic properties are not at all obvious. It is not
immediately clear, for example, when p(m) is prime, or a square or higher power,
or even what the parity of p(m) is. One of the first important results of the
arithmetic properties of p(m) was discovered by Ramanujan [12], and proved in
1938 by Watson [13]:

Theorem 1. Let 24m ≡ 1 (mod 5n). Then p(m) ≡ 0 (mod 5n).

Ramanujan also found similar remarkable families of congruences for powers
of 7 and 11. To prove this theorem even in the single case n = 1 is difficult.
The general theorem is of a considerably deep kind.

Since Ramanujan’s discovery, similar families of congruences have been dis-
covered in many different restricted partition functions. While a similar ap-
proach to Watson’s has proven useful for verifying these congruence families, var-
ious complications can arise in connection with the spaces of modular functions—
and the associated modular curves—that underlie the different partition func-
tions being studied.

We will concern ourselves here with an interesting new family of congruences
for a weighted partition function, discovered by Choi, Kim, and Lovejoy [3], in
2015. The partition function is related to the Rogers–Ramanujan identities, as
well as to the unrestricted partition function p(m).

Our method to resolve the complications associated with this new family of
congruences is based largely on the methods developed by Paule and Radu to
prove the Andrews–Sellers conjecture [9]. These methods themselves are related
to the techniques developed by Atkin to prove Ramanujan’s congruence family
for p(m) over powers of 11 [2].
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To begin, we define a class of subpartitions studied by Kolitsch [7]:

Definition 1. Let λ be a partition of m. The Rogers–Ramanujan subpartition
of λ is the unique subpartition with a maximal number of parts, in which the
parts are nonrepeating, nonconsecutive, and larger than the remaining parts of
λ. More specifically, if λ is the nonincreasing sequence (a1, a2, ..., al, al+1...ak),
then the Rogers–Ramanujan subpartition of λ is the largest possible subpartition
(a1, a2, ..., al) with no repeated or consecutive parts, and with al > al+1 (If l = k,
define al+1 = 0). Here, l is the length of the subpartition.

At times we will denote such a subpartition a R–R subpartition.
For instance, the Rogers–Ramanujan subpartition of

λ = (8, 5, 3, 2, 2, 1, 1, 1)

is (8, 5, 3), with length 3. On the other hand, the Rogers–Ramanujan subparti-
tion of

κ = (8, 8, 2, 2, 1, 1, 1)

is simply the length-0 empty partition.
With this, we now define the partition functions Rl(m), A1(m) as follows:

Definition 2. Let Rl(m) be the number of partitions of m containing a Rogers–
Ramanujan subpartition of length l, and

A1(m) =
∑
l≥0

l ·Rl(m). (1)

For example, we consider A1(5). Here we give the 7 partitions of 5, with the
corresponding R–R subpartitions:

(5) ⊇ (5),

(4, 1) ⊇ (4, 1),

(3, 2) ⊇ (3),

(3, 1, 1) ⊇ (3),

(2, 2, 1),

(2, 1, 1, 1) ⊇ (2),

(1, 1, 1, 1, 1).

So we find that of the seven partitions of 5, four of them contain a R–R
subpartition of length 1, one partition contains a R–R subpartition of length 2,
and two partitions contain no R–R subpartition. We therefore have

A1(5) = 1 ·R1(5) + 2 ·R2(5) = 4 + 2 = 6.

Choi, Kim, and Lovejoy proved [3, Proposition 6.4] that
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A1(25m+ 24) ≡ 0 (mod 5). (2)

From this and further numerical evidence, they conjectured the existence of
a family of partition congruences, similar in kind to Ramanujan’s classic con-
gruences for p(m). We have proved the existence of this conjectured family of
congruences, which we now give in a precise form.

Theorem 2. For 24m ≡ 1 (mod 52n), we have A1(m) ≡ 0 (mod 5n).

We give the proof of Theorem 2 in Section 5. In Section 2 we will define the
generating function for A1(m), and reduce our problem to one more directly
accessible in terms of eta quotients. We will define the sequence L = (Ln)n≥1,
together with the U (j) operators in Section 3. In doing so, we will have provided
an outline for the inductive proof of a stronger version of our theorem.

In Section 4 we will define the key spaces X(j) of modular functions over
Γ0(20). We will also use some key fundamental relations between specific mod-
ular functions, with a recursion defined by a modular equation for the prime 5,
to prove some important lemmas which will lead up to our main proof. Finally,
in Section 6 we will list and discuss the proofs of our fundamental relations.

We wish to note that, as demonstrated in Section 2, our theorem provides
a means of connecting A1(m), which has a clear association with the Rogers–
Ramanujan identities, with Ramanujan’s classic congruence family for p(m)
modulo powers of 5. Moreover, our own numerical evidence indicates that there
are no additional simple congruence families for A1(m) relative to powers of
7 or 11. This would seem to highlight a peculiar significance of the number
5 in connecting p(m) with the Rogers–Ramanujan identities. Whether or not
this observation is actually conducive to additional work is not certain, but the
connection is curious nevertheless.

2 Generating Function

Hereafter, as in [1, Chapter 2], define

(a; b)r =

r−1∏
n=0

(1− abn), and (a; b)∞ = lim
r→∞

(a; b)r. (3)

Recall [1, Chapter 7] the generating function for the number of partitions
into exactly r parts, in which all parts are nonconsecutive and nonrepeating, is
given by

qr
2

(q; q)r
.

However, if we allow the denominator to grow to (q; q)∞, we now generate the
number of partitions of m in which the first r parts are necessarily nonconsecu-
tive and nonrepeating, and larger than all remaining parts.

Notice, however, that such a partition may indeed have a larger number
of large, nonconsecutive, nonrepeating parts; that is, all partitions containing
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a Rogers–Ramanujan subpartition of length l ≥ r are also accounted for with
qr

2

/(q; q)∞. In particular, if we sum from r = 1 to l, i.e.,

l∑
r=1

qr
2

(q; q)∞
=

1

(q; q)∞

l∑
r=1

qr
2

,

the number of partitions of m containing a Rogers–Ramanujan subpartition of
length l is accounted for a total of l times. Since of course, (q; q)−1∞

∑∞
r=l+1 q

r2

will only account for subpartitions of length > l, we have

Theorem 3.

1

(q; q)∞

∞∑
r=1

qr
2

=

∞∑
m=1

∑
l≥0

l ·Rl(m)qm =

∞∑
m=1

A1(m)qm. (4)

However, we can reduce the generating function to a simpler object. We see
that

∞∑
m=1

A1(m)qm =
1

(q; q)∞

( ∞∑
r=1

qr
2

)
(5)

=
1

2

1

(q; q)∞

(( ∞∑
r=−∞

qr
2

)
− 1

)
. (6)

We can multiply both sides of (6) by 2:

2

∞∑
m=1

A1(m)qm =
1

(q; q)∞

( ∞∑
r=−∞

qr
2

)
− 1

(q; q)∞
. (7)

Now we bring Jacobi’s triple product identity [6, Chapter 3, Theorem 3] to bear

on
∑∞
r=−∞ qr

2

, and have

2

∞∑
m=1

A1(m)qm =
(q2; q2)∞(−q; q2)2∞

(q; q)∞
− 1

(q; q)∞
(8)

=
(q2; q2)5∞

(q; q)3∞(q4; q4)2∞
− 1

(q; q)∞
. (9)

Finally, we can express 1/(q; q)∞ =
∑∞
m=0 p(m)qm. If we let a(m) represent

the coefficient of qm in our first term of (9), then we have

2 ·A1(m) = a(m)− p(m). (10)

Now, we already know from Ramanujan’s classic congruences that whenever
24m ≡ 1 (mod 52n), we have p(m) ≡ 0 (mod 52n). Moreover, gcd(2, 5) = 1, so
that the factor of 2 on the left hand side of (10) is irrelevant to the question
of divisibility by powers of 5. Therefore, we need only verify our congruence
family for a(m).
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3 Setup for a Proof by Induction

3.1 Ln

Because the initial cases of Theorem 2 may be checked by computation, it is
reasonable to attempt a proof by induction. We need a way of connecting the
case for some arbitrary n to n+1. To do this, we define the functions Ln (n ≥ 0)
as follows:

L0 = 1, (11)

L2n−1 = L2n−1(q) =
(q5; q5)3∞(q20; q20)2∞

(q10; q10)5∞

∞∑
m=0

a(52n−1m+ λ2n−1)qm+1, (12)

L2n = L2n(q) =
(q; q)3∞(q4; q4)2∞

(q2; q2)5∞

∞∑
m=0

a(52nm+ λ2n)qm+1, (13)

with

λ2n−1 =
19 · 52n−1 + 1

24
, and λ2n =

23 · 52n + 1

24
. (14)

Here, λn is the minimal solution to 24x ≡ 1 (mod 5n). Because gcd(24, 5) = 1,
any other solution δ must satisfy

δ ≡ λn (mod 5n),

i.e., δ = 5nm+ λn.
For n ≥ 1, we can give Ln a more succinct representation as

Ln = An(q) ·
∑

24m≡1 (mod5n)

a(m)qb
m
5n c+1, (15)

with An(q) defined by the prefactors of (12) or (13), depending on the parity
of n.

Notice that the prefactors An(q) can be expanded into integer power series
with constant term 1. This implies that no positive power of 5 can divide
any An(q) (that is, no positive power of 5 can divide every term of An(q)).
Therefore, if a given power of 5 divides Ln, then that given power of 5 must
divide every term a(m). Demonstrating that L2n ≡ 0 (mod 5n) would imply
Theorem 2.

We now need a means of connecting Ln to Ln+1.

3.2 The U5-Operator

Hereafter, we define H as the upper half complex plane, and let q = e2πiτ , with
τ ∈ H.

We recall the classic U5-operator:
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Definition 3. Let f(q) =
∑
m≥M a(m)qm. Then define

U5{f(q)} =
∑

5m≥M

a(5m)qm. (16)

We list some of the important properties of U5. These properties are stan-
dard to the theory of partition congruences, and proofs can be found in [1,
Chapter 10] and [6, Chapter 8].

Lemma 1. Given two functions

f(q) =
∑
m≥M

a(m)qm, g(q) =
∑
m≥N

b(m)qm,

any α ∈ C, a primitive fifth root of unity ζ, and the convention that q1/5 = e2πiτ/5,
we have the following:

1. U5{α · f + g} = α · U5{f}+ U5{g};

2. U5{f(q5)g(q)} = f(q)U5{g(q)};

3. 5 · U5{f} =
∑4
r=0 f

(
ζrq1/5

)
.

Returning to our specific problem, we make use of the properties of U5 by
defining the following:

Definition 4.

A(q) = q
(q2; q2)5∞

(q; q)3∞(q4; q4)2∞
· (q25; q25)3∞(q100; q100)2∞

(q50; q50)5∞
; (17)

U (0){f} = U5 {A(q) · f} , and U (1){f} = U5{f}. (18)

Notice that for two functions f and g, and any α ∈ C,

U (0){α · f + g}
= U5 {A(q)(α · f + g)} = U5 {α ·A(q) · f +A(q) · g} (19)

= α · U5 {A(q) · f}+ U5 {A(q) · g} = α · U (0){f}+ U (0){g}. (20)

Since we already know from Part 1 of Lemma 1 that U (1) = U5 is linear, we
have thus established that U (j) is linear for j = 0, 1.

This now gives us a means of connecting Ln with Ln+1.

Theorem 4. For all n ∈ Z>0,

L2n−1 = U (0){L2n−2}, and L2n = U (1){L2n−1}. (21)

Proof. For a given n ∈ Z>0,
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U (1) {L2n−1}

= U5

{
(q5; q5)3∞(q20; q20)2∞

(q10; q10)5∞

∞∑
m=0

a(52n−1m+ λ2n−1)qm+1

}
(22)

=
(q; q)3∞(q4; q4)2∞

(q2; q2)5∞
U5

∑
m≥0

a(52n−1m+ λ2n−1)qm+1

 (23)

=
(q; q)3∞(q4; q4)2∞

(q2; q2)5∞
U5

∑
m≥1

a(52n−1(m− 1) + λ2n−1)qm

 (24)

=
(q; q)3∞(q4; q4)2∞

(q2; q2)5∞

∑
5m≥1

a(52n−1(5m− 1) + λ2n−1)qm (25)

=
(q; q)3∞(q4; q4)2∞

(q2; q2)5∞

∞∑
m=0

a(52nm+ 52n − 52n−1 + λ2n−1)qm+1 (26)

=
(q; q)3∞(q4; q4)2∞

(q2; q2)5∞

∞∑
m=0

a(52nm+ λ2n)qm+1, (27)

since

52n − 52n−1 + λ2n−1 = 52n−1(4) +
19 · 52n−1 + 1

24
(28)

=
52n−1(5 · 23) + 1

24
=

23 · 52n + 1

24
= λ2n. (29)

Furthermore,

U (0) {L2n}

= U5

{
A(q) · (q; q)3∞(q4; q4)2∞

(q2; q2)5∞

∞∑
m=0

a(52nm+ λ2n)qm+1

}
(30)

= U5

{
(q25; q25)3∞(q100; q100)2∞

(q50; q50)5∞

∞∑
m=0

a(52nm+ λ2n)qm+2

}
(31)

=
(q5; q5)3∞(q20; q20)2∞

(q10; q10)5∞
U5

{ ∞∑
m=0

a(52nm+ λ2n)qm+2

}
(32)

=
(q5; q5)3∞(q20; q20)2∞

(q10; q10)5∞
U5

∑
m≥2

a(52n(m− 2) + λ2n)qm

 (33)

=
(q5; q5)3∞(q20; q20)2∞

(q10; q10)5∞

∑
5m≥2

a(52n(5m− 2) + λ2n)qm. (34)

Notice that 5m ≥ 2 implies that m ≥ 1 for m ∈ Z, so that
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U (0) {L2n}

=
(q5; q5)3∞(q20; q20)2∞

(q10; q10)5∞

∑
m≥1

a(52n+1m− 2 · 52n + λ2n)qm (35)

=
(q5; q5)3∞(q20; q20)2∞

(q10; q10)5∞

∞∑
m=0

a(52n+1(m+ 1)− 2 · 52n + λ2n)qm+1 (36)

=
(q5; q5)3∞(q20; q20)2∞

(q10; q10)5∞

∞∑
m=0

a(52n+1m+ λ2n+1)qm+1, (37)

since

52n+1 − 2 · 52n + λ2n = 52n(3) +
23 · 52n + 1

24
(38)

=
52n(5 · 19) + 1

24
=

19 · 52n+1 + 1

24
= λ2n+1. (39)

We remark that the definition of Ln and the means of going from Ln to
Ln+1 is a standard technique in this subject area [6, Chapter 8].

We can now study the sequence L = (Ln)n≥0, with U (j) as a means of
connecting one element with the next. We know that L2 is divisible by 5 (since
this is equivalent for the first case of Theorem 2, which Choi, Kim, and Lovejoy
have already proven). We want to prove that as n increases by 2, Ln will become
divisible by an additional power of 5. In a more formal language, we will prove
the following theorem, which implies Theorem 2.

Theorem 5. The sequence L = (Ln)n≥0 converges to 0 in the 5-adic sense: for
any M ∈ N there exists an N ∈ N such that for all n ≥ N ,

Ln ≡ 0 (mod 5M ). (40)

In particular, N = bM/2c will suffice.

4 Subspace Structure

4.1 X(j)

We will now construct the spaces of modular functions that are necessary for our
purposes. In the case of p(m), the necessary modular functions are defined over
Γ0(5). The associated modular curve X0(5) is simple enough that the complete
space of modular functions over Γ0(5) may be used.

However, in our case we will work over Γ0(20). The modular curve X0(20)
is more complex, ensuring that 5-adic convergence to 0 is not a necessity for
the entire space of modular functions defined over it (See [9, Section 1.3] for
a discussion on the effects of the properties of X0(N). For a comprehensive
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discussion of the theory of Riemann surfaces to the subject of modular forms,
see [4, Chapters 1-3]). We therefore need to restrict ourselves to subspaces of
modular functions that will indeed converge 5-adically to 0.

Let q = e2πiτ , with τ ∈ H, and define

t =
η(5τ)6

η(τ)6
= q

(q5; q5)6∞
(q; q)6∞

, (41)

ρ =
η(τ)2η(4τ)2η(10τ)8

η(5τ)2η(20τ)10
=

1

q5
(q; q)2∞(q4; q4)2∞(q10; q10)8∞

(q5; q5)2∞(q20; q20)10∞
(42)

σ =
η(4τ)4η(10τ)2

η(2τ)2η(20τ)4
=

1

q2
(q4; q4)4∞(q10; q10)2∞
(q2; q2)2∞(q20; q20)4∞

, (43)

µ =
η(4τ)η(5τ)5

η(τ)η(20τ)5
=

1

q3
(q4; q4)∞(q5; q5)5∞
(q; q)∞(q20; q20)5∞

, (44)

with [6, Chapter 3]

η(τ) = eπiτ/12
∞∏
n=1

(
1− e2πinτ

)
, (45)

and

p0 =31ρ−1 − 22σρ−1 − 9σ2ρ−1 − 208ρ−2 − 96σρ−2 + 304σ2ρ−2

− 32ρ−1µ+ 416ρ−2µ+ 416σρ−2µ− 208ρ−2µ2, (46)

p1 =261ρ−1 + 126σρ−1 + 13σ2ρ−1 − 960ρ−2 − 5120σρ−2 − 320σ2ρ−2

+ 64ρ−1µ+ 320ρ−2µ− 1280σρ−2µ+ 640ρ−2µ2. (47)

In Section 6 we will demonstrate that each of these functions is a modular
function over Γ0(20).

Define

S0 = 〈1, p0〉Z[t] , (48)

S1 = 〈1, p1〉Z[t] . (49)

That is, for j = 0, 1, Sj is the free Z[t]-module generated by 1 and pj . A given
g ∈ Sj has the form

g = gα(t) + pj · gβ(t),

with gα, gβ ∈ Z[x].
We find (see Section 6.2) that

L1 = U (0){1} = p1 ∈ S1.

As the relations in Groups II and IV of Section 6 demonstrate,
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L2 = U (1){L1} = U (1){p1} ∈ S0, and U (0){p0} ∈ S1.

This, with the linearity of U (j), ensures that that for n ≥ 0,

L2n ∈ S0, (50)

L2n−1 ∈ S1. (51)

We will work with specific subspaces of S0, S1.

Definition 5. A function f : Z→ Z is discrete if it is nonzero for only finitely
many integers. A two-variable function h : Z× Z→ Z is a discrete array if for
any fixed m0 ∈ Z, the function h(m0, n) is discrete over n ∈ Z.

We now define our relevant subspaces:

X(0)

=

{ ∞∑
n=0

r(n)5b
5n
2 cp0tn +

∞∑
n=1

s(n)5b
5n−3

2 ctn : r, s discrete functions

}
, (52)

X(1)

=

{ ∞∑
n=0

r(n)5b
5n
2 cp1tn +

∞∑
n=1

s(n)5b
5n−1

2 ctn : r, s discrete functions

}
. (53)

Notice that for j = 0, 1, we have X(j) ⊆ Sj . In particular, L1 = p1 ∈ X(1).

4.2 Modular Equation

We have very carefully chosen the spaces X(j). Rather than working directly
with Ln, we will show that Ln ∈ X(r), with r the residue of n (mod 2). We
then study how U (j) changes the structure of an arbitrary f ∈ X(j).

To do this, we will need to know the effects of U (j) on pjt
n, tn. Our choice

of t = η(5τ)6/η(τ)6 is especially convenient, as we have a powerful modular
equation that can be brought to bear on the problem.

Theorem 6. Let

a0(τ) = −t,
a1(τ) = −53t2 − 6 · 5t,
a2(τ) = −56t3 − 6 · 54t2 − 63 · 5t,
a3(τ) = −59t4 − 6 · 57t3 − 63 · 54t2 − 52 · 52t,
a4(τ) = −512t5 − 6 · 510t4 − 63 · 57t3 − 52 · 55t2 − 63 · 52t.

Then

t(τ)5 +

4∑
j=0

aj(5τ)t(τ)j = 0. (54)
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A proof of this can be found in [9, Section 3].
The value of this equation becomes immediate when we consider the follow-

ing theorem:

Lemma 2. For any function g : H→ C,

U5{g · tn} = −
4∑
j=0

aj(τ)U5{g · tn+j−5}. (55)

Proof. With equation (54), we have

g(τ) · t(τ)n = −
4∑
j=0

aj(5τ) · g(τ) · t(τ)n+j−5. (56)

Taking the U5 operator, and remembering that

U5{aj(5τ) · g(τ) · t(τ)n+j−5} = aj(τ) · U5{g(τ) · t(τ)n+j−5},

by Part 3 of Lemma 1, we find that

U5{g · t(τ)n} = −
4∑
j=0

U5{aj(5τ) · g · t(τ)n+j−5}, (57)

= −
4∑
j=0

aj(τ) · U5{g · t(τ)n+j−5}. (58)

4.3 Lemmas

We now state and prove a key application of the modular equation for t. This
lemma is given in the form of two lemmas in [9, Section 4], but we give the proof
for the sake of completion.

Lemma 3. For any functions g, y0, y1 : H→ C, if there exist u0, u1, v0, v1 ∈ Z,
and discrete arrays h0(m,n), h1(m,n) such that

U5{gtn} =
∑

m≥dn+u0
5 e

h0(m,n)5b
5m−n+v0

2 cy0tm

+
∑

m≥dn+u1
5 e

h1(m,n)5b
5m−n+v1

2 cy1tm (59)

for five consecutive integers, then such a relation holds for every larger integer.

Proof. Suppose that for specific functions g, y0, y1, discrete arrays h0, h1, and
integers u0, u1, v0, v1, the given relation holds for five consecutive integers:
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n0, n0 + 1, n0 + 2, n0 + 3, n0 + 4.

We prove the lemma by induction.
Let k ≥ n0 + 5, and assume that the relation holds for all j ∈ Z such that

n0 ≤ j ≤ k− 1. In particular, the relation holds for j = k− 5, k− 4, ..., k− 1.
We want to prove that the relation must hold for k. It can be quickly verified
from the previous lemma that

aj(τ) =

5∑
l=1

s(j, l)5b
5l+j−4

2 ctl, (60)

for some unique function s : {0, ..., 4} × {1, ..., 5} → Z. With this in mind, we
have

U5{gtk}

= −
4∑
j=0

aj(τ)U5{g · t(τ)k+j−5} (61)

= −
4∑
j=0

aj(τ)
∑
i=0,1

∑
m≥

⌈
k+j−5+ui

5

⌉hi(m, k + j − 5)5

⌊
5m−(k+j−5)+vi

2

⌋
yit

m (62)

= −
∑
i=0,1

4∑
j=0

aj(τ)
∑

m≥
⌈
k+ui

5 − 5−j
5

⌉hi(m, k + j − 5)5

⌊
5m−(k+j−5)+vi

2

⌋
yit

m. (63)

Taking mi,j =
⌈
k+ui

5 − 5−j
5

⌉
, we have

U5{gtk}

= −
∑
i=0,1,
0≤j≤4,
1≤l≤5

s(j, l)5b
5l+j−4

2 ctl
∑

m≥mi,j

hi(m, k + j − 5)5

⌊
5m−(k+j−5)+vi

2

⌋
yit

m (64)

= −
∑
i=0,1,
0≤j≤4,
1≤l≤5

∑
m≥mi,j

s(j, l)hi(m, k + j − 5)5

⌊
5m−(k+j−5)+vi

2

⌋
+b 5l+j−4

2 cyitm+l. (65)

Now, we note that for any M1,M2 ∈ Z, we have
⌊
M1

2

⌋
+
⌊
M2

2

⌋
≥
⌊
M1+M2

2 − 1
2

⌋
.

Therefore,

⌊
5m− (k + j − 5) + vi

2

⌋
+

⌊
5l + j − 4

2

⌋
≥
⌊

5m− (k + j − 5) + vi
2

+
5l + j − 4

2
− 1

2

⌋
=

⌊
5(m+ l)− k + vi

2

⌋
. (66)
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Now since mi,j =
⌈
k+ui

5 − 5−j
5

⌉
≥
⌈
k+ui

5

⌉
− 1, and since l ≥ 1, we relabel our

powers of t so that

U5{gtk}

= −
∑
i=0,1,
0≤j≤4,
1≤l≤5

∑
m≥

⌈
k+ui

5

⌉
−1+l

s(j, l)hi(m− l, k + j − 5)5

⌊
5m−k+vi

2

⌋
yit

m. (67)

Finally, defining the discrete function Hi(m, k) by

Hi(m, k) =

{
−
∑4
j=0

∑5
l=1 s(j, l)hi(m− l, k + j − 5), m ≥ l,

0, otherwise,

we have

U5{gtk} =
∑

m≥d k+u05 e
H0(m, k)5b

5m−k+v0
2 cy0tm

+
∑

m≥d k+u15 e
H1(m, k)5b

5m−k+v1
2 cy1tm. (68)

By induction, we have established the given relation for all n ≥ n0.

We can use this lemma to define a very useful “skeletal” structure for
U (j){pjtn}, U (j){tn} as follows:

Lemma 4. There exist discrete arrays aj(m,n), bj(m,n), c(m,n), dj(m,n), with
j ∈ {0, 1}, such that for all nonnegative n ∈ Z,

U (0){tn} =
∑

m≥dn+1
5 e

a0(m,n)5b
5m−n−1

2 ctm

+
∑

m≥dn5 e
a1(m,n)5b

5m−n
2 cp1tm, (69)

U (0){p0tn} =
∑

m≥dn+2
5 e

b0(m,n)5b
5m−n−1

2 ctm

+
∑

m≥dn5 e
b1(m,n)5b

5m−n
2 cp1tm, (70)

U (1){tn} =
∑

m≥dn5 e
c(m,n)5b

5m−n−1
2 ctm, (71)

U (1){p1tn} =
∑

m≥dn+1
5 e

d0(m,n)5b
5m−n−1

2 ctm

+
∑

m≥dn−1
5 e

d1(m,n)5b
5m−n+2

2 cp0tm, (72)

Notice that we can set a0(m,n) = 0 whenever m < d(n+ 1)/5e. More
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generally, for j = 0, 1, we can define

aj(m,n) = bj(m,n) = c(m,n) = dj(m,n) = 0 (73)

if the corresponding inequalities for m,n in (69), (70), (71), (72) do not hold.

Proof. The previous lemma establishes that if these relations hold for k−5, k−
4, ...k − 1, then they will hold for all n ≥ k. We therefore need twenty ini-
tial relations—relations for five consecutive values, in four categories. These
relations are demonstrated to hold in Section 6, for −4 ≤ k ≤ 0.

5 Main Theorem

Theorem 7. If f ∈ X(0), then we have U (0){f} ∈ X(1). If f ∈ X(1), then we
have 5−1U (1){f} ∈ X(0).

Proof. Let f ∈ X(0). Then there exist discrete functions r, s such that

f =

∞∑
n=0

r(n)5b
5n
2 cp0tn +

∞∑
n=1

s(n)5b
5n−3

2 ctn. (74)

We take U (0){f}. Using Lemma 4, with condition (73), we find that

U (0){f}

=

∞∑
n=0

r(n)5b
5n
2 cU (0){p0tn}+

∞∑
n=1

s(n)5b
5n−3

2 cU (0){tn} (75)

=

∞∑
n=0

r(n)5b
5n
2 c
( ∑
m≥dn+2

5 e
b0(m,n)5b

5m−n−1
2 ctm

+
∑

m≥dn5 e
b1(m,n)5b

5m−n
2 cp1tm

)

+

∞∑
n=1

s(n)5b
5n−3

2 c
( ∑
m≥dn+1

5 e
a0(m,n)5b

5m−n−1
2 ctm

+
∑

m≥dn5 e
a1(m,n)5b

5m−n
2 cp1tm

)
. (76)

Because aj(m,n), bj(m,n), c(m,n), dj(m,n) have the additional condition (73),
we may rearrange our summands such that
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U (0){f} = p1
∑
m≥0

∑
n≥0

r(n)b1(m,n)5b
5n
2 c+b 5m−n

2 ctm (77)

+ p1
∑
m≥1

∑
n≥1

s(n)a1(m,n)5b
5n−3

2 c+b 5m−n
2 ctm (78)

+
∑
m≥1

∑
n≥0

r(n)b0(m,n)5b
5n
2 c+b 5m−n−1

2 ctm (79)

+
∑
m≥1

∑
n≥1

s(n)a0(m,n)5b
5n−3

2 c+b 5m−n−1
2 ctm. (80)

Now, we simplify the powers of 5 corresponding to each double sum. For line
(77), with m,n ≥ 0,

⌊
5n

2

⌋
+

⌊
5m− n

2

⌋
=

⌊
3n

2

⌋
+

⌊
5m+ n

2

⌋
≥
⌊

5m

2

⌋
. (81)

For (78), notice that m,n ≥ 1. So we have⌊
5n− 3

2

⌋
+

⌊
5m− n

2

⌋
=

⌊
3n− 3

2

⌋
+

⌊
5m+ n

2

⌋
≥
⌊

5m

2

⌋
. (82)

Notice that
⌊
5m
2

⌋
is the necessary power of 5 in the coefficient of p1t

m for X(1).
For (79), we have m ≥ 1, n ≥ 0.

⌊
5n

2

⌋
+

⌊
5m− n− 1

2

⌋
≥
⌊

5m+ n− 1

2

⌋
≥
⌊

5m− 1

2

⌋
. (83)

Finally, for (80), with m,n ≥ 1,

⌊
5n− 3

2

⌋
+

⌊
5m− n− 1

2

⌋
≥
⌊

5m+ n− 1

2

⌋
≥
⌊

5m− 1

2

⌋
. (84)

Since
⌊
5m−1

2

⌋
is the necessary power of 5 in the coefficient of tm for X(1) (and

no constant term is generated), we have U (0){f} ∈ X(1).
To prove the second statement of our theorem, we let f ∈ X(1). We want

U (1){f} ∈ X(0), with an additional power of 5 in each term. To begin, we have
by hypothesis,

f =

∞∑
n=0

r(n)5b
5n
2 cp1tn +

∞∑
n=1

s(n)5b
5n−1

2 ctn. (85)

We take U (1){f} and have
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U (1){f}

=

∞∑
n=0

r(n)5b
5n
2 cU (1){p1tn}+

∞∑
n=1

s(n)5b
5n−1

2 cU (1){tn} (86)

=

∞∑
n=0

r(n)5b
5n
2 c
( ∑
m≥dn+1

5 e
d0(m,n)5b

5m−n−1
2 ctm

+
∑

m≥dn−1
5 e

d1(m,n)5b
5m−n+2

2 cp0tm
)

+

∞∑
n=1

s(n)5b
5n−1

2 c
( ∑
m≥dn5 e

c(m,n)5b
5m−n−1

2 ctm
)

(87)

= p0
∑
m≥0

∑
n≥0

r(n)d1(m,n)5b
5n
2 c+b 5m−n+2

2 ctm (88)

+
∑
m≥1

∑
n≥0

r(n)d0(m,n)5b
5n
2 c+b 5m−n−1

2 ctm (89)

+
∑
m≥1

∑
n≥1

s(n)c(m,n)5b
5n−1

2 c+b 5m−n−1
2 ctm. (90)

Examining our power of 5 for line (88), noting that m,n ≥ 0, we find that

⌊
5n

2

⌋
+

⌊
5m− n+ 2

2

⌋
=

⌊
3n

2

⌋
+

⌊
5m+ n+ 2

2

⌋
≥
⌊

5m+ 2

2

⌋
=

⌊
5m

2

⌋
+ 1. (91)

That is, the coefficient of p0t
m contains at least one additional power of 5 more

than necessary. Similarly, we consider line (89), with m ≥ 1, n ≥ 0:

⌊
5n

2

⌋
+

⌊
5m− n− 1

2

⌋
≥
⌊

5m+ n− 1

2

⌋
≥
⌊

5m− 1

2

⌋
=

⌊
5m− 3

2

⌋
+ 1. (92)

Finally, for line (90), with m,n ≥ 1:

⌊
5n− 1

2

⌋
+

⌊
5m− n− 1

2

⌋
=

⌊
3n− 1

2

⌋
+

⌊
5m+ n− 1

2

⌋
(93)

≥ 1 +

⌊
5m− 1

2

⌋
>

⌊
5m− 3

2

⌋
+ 1. (94)

In both cases, the coefficients of tm contain at least one additional power of 5.
We therefore have U (1){f} = 5 · g, for some g ∈ X(0).

We can now prove a slightly stronger version of Theorem 5.
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Theorem 8. For every n ∈ Z>0, there exist functions g2n−1 ∈ X(1) and
g2n ∈ X(0) such that

L2n−1 = 5n−1g2n−1, and L2n = 5ng2n. (95)

Proof. Since L1 = p1 ∈ X(1), we have

L2 = U (1){L1} = U (1){p1} = 5g1, (96)

with g1 ∈ X(0). Suppose that for some k ∈ Z>0, we have L2k = 5kg2k, with
g2k ∈ X(0). Then we have

L2k+1 = U (0){L2k} = U (0){5kg2k} = 5kU (0){g2k} = 5kg2k+1, (97)

with g2k+1 ∈ X(1). Finally, we have

L2k+2 = U (1){5kg2k+1} = 5kU (1){g2k+1} = 5k · 5 · g2k+2 = 5k+1g2k+2, (98)

with g2k+2 ∈ X(0).
By induction, for every n ∈ Z>0, there must exist a g2n ∈ X(0) such that

L2n = 5ng2n.
Since for every n ∈ Z>0,

L2n+1 = U (0){5ng2n} = 5nU (0){g2n}, (99)

and since L1 = 50p1, we immediately derive that there must exist a g2n−1 ∈ X(1)

such that

L2n−1 = 5n−1g2n−1. (100)

Corollary. For every n ∈ Z>0, L2n ≡ 0 (mod 5n).

Proof. For every n ∈ Z>0, L2n = 5ng2n for some g2n ∈ X(0). And the functions
of X(0) have integer coefficients.

With this, we have proven Theorem 5 and Theorem 2.

6 Initial Cases

We will now justify the twenty initial relations needed to prove Lemma 4.
In practice, each of these relations was found by using an ansatz, i.e., by

guessing. However, the actual verification of these relations can be achieved
through the theory of modular functions. Given the intricacy of this subject,
we can only provide a brief outline here. The interested reader is invited to
consult [4], [6, Chapters 1, 2], and [8] for an outline of the general theory, and
[6, Chapters 3–8] [10] and [11] for specific applications of the theory.
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6.1 Preliminaries

We will denote H as the upper half complex plane, and SL(2,Z) to be the set
of all 2× 2 integer matrices with determinant 1. Furthermore, we let

SL(2,Z)∞ =

{(
1 b
0 1

)
∈ SL(2,Z)

}
.

For any given N ∈ Z>0, let

Γ0(N) =

{(
a b
Nc d

)
∈ SL(2,Z)

}
.

Now, the quotient group SL(2,Z)/SL(2,Z)∞ is the set

SL(2,Z)/SL(2,Z)∞ =

{(
a b
c d

)
SL(2,Z)∞ : a ∈ Z, c ∈ Z≥0, gcd(a, c) = 1

}
.

Assuming first that c 6= 0, each member of the coset

(
a b
c d

)
SL(2,Z)∞ =

{(
a x
c y

)
: x, y ∈ Z, ay − cx = 1

}
is a matrix with fixed left-components a, c, so that we may represent each such
coset with the rational number a/c. If we also identify ∞ with the expression
1/0, then we have a bijection between Q ∪ {∞} and SL(2,Z)/SL(2,Z)∞.

Moreover, because Γ0(N) ⊆ SL(2,Z) is a finite-index subgroup [4, Chapter
1, Section 1.2], there are only a finite number of distinct cosets corresponding
to

SL(2,Z)/Γ0(N).

We can therefore partition Q ∪ {∞} into a finite number of sets, each corre-
sponding to a double coset of

Γ0(N)\SL(2,Z)/SL(2,Z)∞.

Each double coset is referred to as the cusp represented by a/c, in the orbit
space defined by the action of Γ0(N) on H ∪ Q ∪ {∞} (This orbit space is the
corresponding modular curve to Γ0(N). See [4, Chapters 2, 3] for a thorough
treatment on the geometrical interpretation of Γ0(N) over H and the nature of
its cusps).

Definition 6. Let q = e2πiτ , with τ ∈ H. A function f : H → C is modular
with respect to Γ0(N) if the following three conditions apply:

1. f(τ) is holomorphic for all τ ∈ H,
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2.

f

(
aτ + b

Ncτ + d

)
= f(τ), for all

(
a b
Nc d

)
∈ Γ0(N),

3.

f

(
aτ + b

cτ + d

)
=

∞∑
m=mγ(f)

αγ(m)qm gcd(c2,N)/N , for all γ =

(
a b
c d

)
∈ SL(2,Z),

with mγ(f) ∈ Z, and αγ(m) ∈ C for all m ≥ mγ(f).

Here, we refer to mγ(f) as the order of f at the cusp represented by a/c,

respectively by γ =

(
a b
c d

)
∈ SL(2,Z), over Γ0(N).

It can be proved [10, Section 1, Lemma 2] that if γ1, γ2 ∈ SL(2,Z), with

γj =

(
aj bj
cj dj

)
,

such that γ1 ∈ Γ0(N)γ2SL(2,Z)∞, then mγ1(f) = mγ2(f). This fact ensures
that any modular function f has a unique order at each cusp of Γ0(N). Finally,
because we may represent each cusp by a member of Q ∪ {∞}, we may write

mγ = ma/c,

with a, c the left-components of γ.
We now define the relevant sets of all modular functions:

Definition 7. Let K(N) be the set of all modular functions over Γ0(N), and
K∞(N) ⊂ K(N) to be those modular functions over Γ0(N) with a pole only
at the cusp at ∞ (the cusp that can be represented with 1/N , or equivalently,
1/0). These are both commutative rings with 1, and standard addition and
multiplication [10, Section 2.1].

We now give three key theorems that will prove useful in checking the mod-
ularity of certain functions. The first is a theorem by Newman [8, Theorem
1]:

Theorem 9. Let f =
∏
δ|N η(δτ)rδ , with r̂ = (rδ)δ|N an integer-valued vector,

for some N ∈ Z>0. Then f is a modular function over Γ0(N) if and only if the
following apply:

1.
∑
δ|N rδ = 0;

2.
∑
δ|N δrδ ≡ 0 (mod 24);

3.
∑
δ|N

N
δ rδ ≡ 0 (mod 24);

4.
∏
δ|N δ

|rδ| is a perfect square.
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To study the order of an eta quotient at a given cusp, we make use of a
theorem that can be found in [10, Theorem 23], generally attributed to Ligozat:

Theorem 10. If f =
∏
δ|N η(δτ)rδ is a modular function over Γ0(N), then the

order of f at the cusp represented by a/c is given by the following:

ma/c(f) =
N

24 gcd (c2, N)

∑
δ|N

rδ
gcd (c, δ)

2

δ
.

Our last, and possibly most important, theorem, is [6, Chapter 2, Theorem
7]:

Theorem 11. For a given N ∈ Z>0, if f ∈ K(N) has no poles at any cusp of
Γ0(N), then f must be a constant.

This is immensely useful for verifying that two modular functions over the
same space are equivalent. If f, g ∈ K∞(N), and their principal parts match,
then f − g ∈ K(N) can have no poles at any cusp. This forces f − g to be a
constant. If their constants also match, then f − g = 0, i.e., f = g.

6.2 Computing the Initial Cases

We now apply the machinery of modular functions to σ, µ, ρ over Γ0(20). We
begin by making use of [11, Lemma 5.3] to derive a set of representatives for
the distinct cusps of Γ0(20). Doing so gives us the following:

{
1

20
,

1

10
,

1

5
,

1

4
,

1

2
, 1

}
. (101)

Theorems 9 and 10 allow us to quickly verify that σ, µ, ρ ∈ K∞(20). For
instance, in the case of σ, we have

σ =
∏
δ|20

η(δτ)rδ ,

with r̂ = (0,−2, 4, 0, 2,−4), as defined in (43). Here, we can immediately check
the four key conditions of Theorem 9:

∑
δ|N

rδ = −2 + 4 + 2− 4 = 0;

∑
δ|N

δrδ = 2(−2) + 4(4) + 10(2) + 20(−4) = −48 ≡ 0 (mod 24);

∑
δ|N

N

δ
rδ = 10(−2) + 5(4) + 2(2) + 1(−4) = 0 ≡ 0 (mod 24);

∏
δ|N

δ|rδ| = 22 · 44 · 102 · 204 = 21656 = (32000)2.
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We can now use Theorem 10 to compute the order of σ at each cusp.

ord20
1/20 = −2,

ord20
1/4 = 2,

ord20
1/10 = ord20

1/5 = ord20
1/2 = ord20

1 = 0.

This verifies that σ ∈ K∞(20). Similarly, µ, ρ ∈ K∞(20). Recall the defini-
tions of p0, p1, in (46) and (47):

p0 =31ρ−1 − 22σρ−1 − 9σ2ρ−1 − 208ρ−2 − 96σρ−2 + 304σ2ρ−2

− 32ρ−1µ+ 416ρ−2µ+ 416σρ−2µ− 208ρ−2µ2,

p1 =261ρ−1 + 126σρ−1 + 13σ2ρ−1 − 960ρ−2 − 5120σρ−2 − 320σ2ρ−2

+ 64ρ−1µ+ 320ρ−2µ− 1280σρ−2µ+ 640ρ−2µ2.

If we multiply both functions through by ρ2, and remember from Definition 7
that K∞(N) is closed under addition, subtraction, and multiplication, we have:

ρ2p0, ρ
2p1 ∈ K∞(20). (102)

Finally, we can use the same methods to show that

ρ2t ∈ K∞(20). (103)

This gives us a direct means to verify the twenty fundamental relations
below. On the left hand side of each relation, we let −4 ≤ n ≤ 0. With these
values of n, we can determine that for j = 0, 1, and l = 1, 2,

U (j){ρltn}, U (j){σltn}, U (j){µltn}, U (j){tn} ∈ K(20), (104)

with the use of Radu’s algorithm [10, Section 3.1]. We give an example below.
Since Lemma 1 and (20) show that U (j) is linear, we can therefore demon-

strate that

U (0){p0tn}, U (1){p1tn} ∈ K(20). (105)

Theorem 10 can quickly be used to check that ρ has negative order only at
infinity; it has positive order at every other cusp except 1/5. However, the
functions in (104) do not have negative order at 1/5, as can be checked with
[10, Theorem 47]. Therefore, a sufficiently large prefactor of ρk can then be
used to push each function in (104), and therefore U (j){pjtn}, to K∞(20).

We now take advantage of Theorem 11. Because both sides of each of the
twenty relations below is a member of K(20), and a sufficiently large power of ρ
can put both sides into K∞(20), verification of each relation is merely a matter
of comparing the principal parts at infinity of each side—a finite task that can
easily be done by computer.
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A mild exception holds for the final relation of Group IV. Since t−1 has a
pole at the cusp 1/5, no prefactor of ρ is sufficient to push it into K∞(20). We
need to multiply both sides of each relation by t, as well as a sufficient power of
ρ.

As an example, we choose the second relation of Group I. In computing

U (0){t−1} = U5

{
A(q) · (q; q)6∞

q(q5; q5)6∞

}
(106)

= U5

{
(q; q)3∞(q2; q2)5∞(q25; q25)3∞(q100; q100)2∞

(q4; q4)2∞(q5; q5)6∞(q50; q50)5∞

}
(107)

= U5

∏
δ|100

(qδ; qδ)rδ∞

 , (108)

with r̂ = (rδ)δ|100 = (3, 5,−2,−6, 0, 0, 3,−5, 2).
Taking ŝ = (sδ)δ|20 = (4, 0, 4,−4, 16,−20), as the doubled powers of the

factors of ρ (i.e. ρ2), we find that (5, 100, 20, 0, r̂) ∈ ∆∗ [10, Definition 35]. As
a result, we can verify that r̂ and ŝ satisfy the equations of [10, Theorem 45],
with v = 0 and |P5,r̂(0)| = 1, therefore guaranteeing that

ρ2U (0){t−1} = ρ2 · U5

∏
δ|100

(qδ; qδ)rδ∞

 ∈ K(20), (109)

and [10, Theorem 47] that

ord20
γ

ρ2 · U5

∏
δ|100

(qδ; qδ)rδ∞


 ≥ 0, (110)

for every γ ∈ SL(2,Z)\Γ0(20). That is to say, ρ2U (0){t−1} contains no poles
except at the cusp of ∞.

We have therefore verified that

ρ2U (0){t−1} ∈ K∞(20). (111)

Since (102) and (103) imply that

ρ2(1 + 52t− 5p1) ∈ K∞(20), (112)

we need only compare the principal parts and the constants of (111) and (112).
We find that both expressions have the identical principal part and constant

1

q10
− 44

q9
− 138

q8
− 372

q7
− 989

q6
− 1584

q5

− 2814

q4
− 4356

q3
− 5897

q2
− 9508

q
− 12696. (113)
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As a result, both expressions must be equal:

ρ2U (0){t−1} = ρ2(1 + 52t− 5p1), (114)

U (0){t−1} = 1 + 52t− 5p1. (115)

6.3 Group I

U (0){1} = p1, (116)

U (0){t−1} = 1 + 52t− 5p1, (117)

U (0){t−2} = −9 + 55t2 + 9 · 5p1, (118)

U (0){t−3} = 17 · 5 + 58t3 − 17 · 52p1, (119)

U (0){t−4} = −161 · 5 + 511t4 + 161 · 52p1. (120)

6.4 Group II

U (0){p0} =− 63 · 52t− 104 · 55t2 − 189 · 57t3 − 24 · 510t4 − 513t5

+ p1
(
1− 63 · 52t− 104 · 55t2 − 189 · 57t3 − 24 · 510t4

− 513t5
)
, (121)

U (0){p0t−1} =52t− 6p1, (122)

U (0){p0t−2} =− 9− 53t+ 55t2 + p1(9 · 5− 53t), (123)

U (0){p0t−3} =17 · 5− 56t2 + 58t3 − p1(17 · 52 − 56t2), (124)

U (0){p0t−4} =− 161 · 5− 59t3 + 511t4 + p1(161 · 52 − 59t3). (125)

6.5 Group III

U (1){1} = 1, (126)

U (1){t−1} = −6− 52t, (127)

U (1){t−2} = 54− 55t2, (128)

U (1){t−3} = −102 · 5− 58t3, (129)

U (1){t−4} = 966 · 5− 511t4. (130)
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6.6 Group IV

U (1){p1} =233 · 52t+ 1188 · 54t2 + 317 · 57t3 + 31 · 510t4 + 513t5

+ p0(2 · 5 + 44 · 53t+ 14 · 56t2 + 59t3), (131)

U (1){p1t−1} =13 + 52t+ 5p0, (132)

U (1){p1t−2} =− 66− 54t+ 55t2 + 54tp0, (133)

U (1){p1t−3} =114 · 5− 57t2 + 58t3 + 57t2p0, (134)

U (1){p1t−4} =− 1037 · 5 + 82 · 54t+ 112 · 56t2 − 7 · 59t3 − 4 · 511t4

+ p0
(
t−1 − 2 · 53 − 44 · 55t− 14 · 58t2 − 4 · 510t3

)
. (135)
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